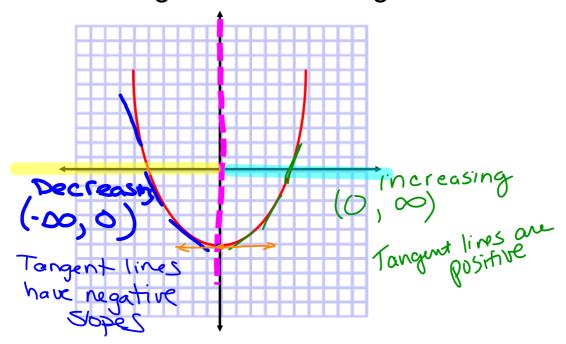
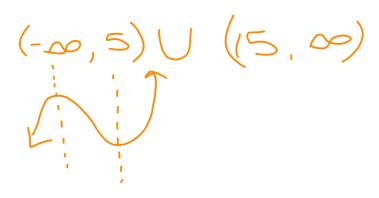
Increasing and Decreasing Functions

and the First Derivative Test

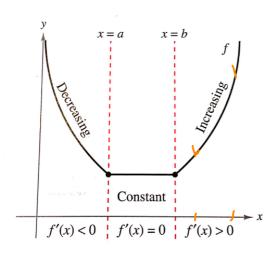
Increasing and Decreasing





Derivatives can be used to classify relative extrema.

Let f be a function that is continuous on the closed interval [a,b] and differentiable on the open interval (a,b).



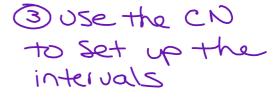
- 1. If f'(x) > 0 for all x in (a,b), then f is increasing on [a,b]
- 2. If f'(x)<0 for all x in (a,b), then f is decreasing on [a,b]
- 3. If f'(x)=0 for all x in (a,b), then f is constant on [a,b]

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is increasing or decreasing.

$$f'(x) = 3x^2 - 3x$$

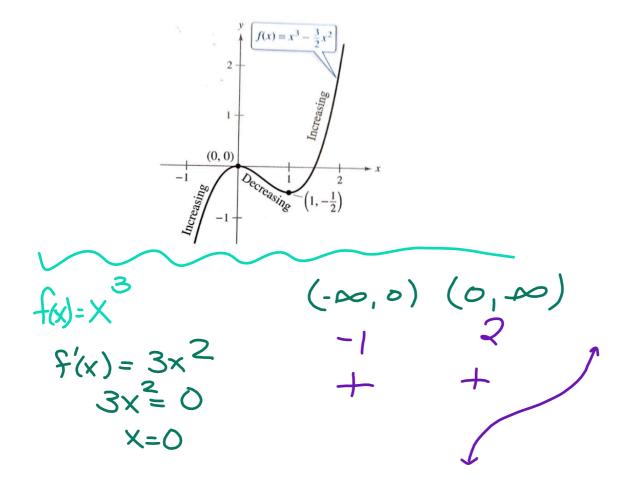
$$3x^{2}-3x=0$$

 $3X(x-1)=0$
 $3x=0$ $x-1=0$
 $X=0,1$



Interval	(-00,0)	(0,1)	(1, 00)
	- DO < X < O	0<×<	1 < X < >
Test Value	-1	8/s	6
Sign of f'(x)	3(-1) ² -3(-1)		+
Conclusion	incr	Dec	Incr

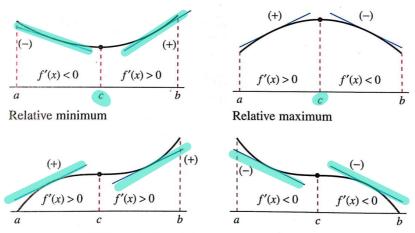
1ncr: (-00,0)U(1,00) Decr: (0,1)



THEOREM 3.6 The First Derivative Test

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified as follows.

- 1. If f'(x) changes from negative to positive at c, then f has a relative minimum at (c, f(c)).
- 2. If f'(x) changes from positive to negative at c, then f has a relative maximum at (c, f(c)).
- 3. If f'(x) is positive on both sides of c or negative on both sides of c, then f(c) is neither a relative minimum nor a relative maximum.



Neither relative minimum nor relative maximum

Find the relative extrema of $f(x) = \frac{1}{2}x - \sin x$

$$f(x) = \frac{1}{2} - \cos x$$

$$\frac{1}{2} - \cos x = 0$$

$$-\cos x = \frac{1}{2}$$

$$\cos x = \frac{1}{2}$$

$$x = \frac{1}{3}, \sin x$$

(0,1/3)	(1/3,SIL)	(5)3,211)	
7%	T	1172	
_	+	~	
Decr	Incl	Decr	

Find the relative extrema of $f(x) = (x^2 - 4)^{\frac{2}{3}}$ $f'(x) = \frac{2}{3}(x^2-4)^{-\frac{1}{3}}(2x)$

$$f(x) = \frac{4x}{3(x^2-4)^{y_3}}$$
 $\frac{4x}{3(x^2-4)^{y_3}} = 0$
 $\frac{4x}{3(x^2-4)^{y_3}} = 0$
 $x = \pm 2$
 $x = 0$

				15
(- \omega_{-2})	(-2,0)	(o, z)	$(2, \infty)$	intervals
-3	- (3	Les Jalve
_	+		+	2,14)
Deci	Incl	Dece	Inex	conclusion